Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Intensive Care Med ; : 8850666231217707, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629466

RESUMO

RATIONALE: Recent studies suggest that both hypo- and hyperinflammatory acute respiratory distress syndrome (ARDS) phenotypes characterize severe COVID-19-related pneumonia. The role of lung Severe Acute Respiratory Syndrome - Coronavirus 2 (SARS-CoV-2) viral load in contributing to these phenotypes remains unknown. OBJECTIVES: To redefine COVID-19 ARDS phenotypes when considering quantitative SARS-CoV-2 RT-PCR in the bronchoalveolar lavage of intubated patients. To compare the relevance of deep respiratory samples versus plasma in linking the immune response and the quantitative viral loads. METHODS: Eligible subjects were adults diagnosed with COVID-19 ARDS who required mechanical ventilation and underwent bronchoscopy. We recorded the immune response in the bronchoalveolar lavage and plasma and the quantitative SARS-CoV-2 RT-PCR in the bronchoalveolar lavage. Hierarchical clustering on principal components was applied separately on the 2 compartments' datasets. Baseline characteristics were compared between clusters. MEASUREMENTS AND RESULTS: Twenty subjects were enrolled between August 2020 and March 2021. Subjects underwent bronchoscopy on average 3.6 days after intubation. All subjects were treated with dexamethasone prior to bronchoscopy, 11 of 20 (55.6%) received remdesivir and 1 of 20 (5%) received tocilizumab. Adding viral load information to the classic 2-cluster model of ARDS revealed a new cluster characterized by hypoinflammatory responses and high viral load in 23.1% of the cohort. Hyperinflammatory ARDS was noted in 15.4% of subjects. Bronchoalveolar lavage clusters were more stable compared to plasma. CONCLUSIONS: We identified a unique group of critically ill subjects with COVID-19 ARDS who exhibit hypoinflammatory responses but high viral loads in the lower airways. These clusters may warrant different treatment approaches to improve clinical outcomes.

2.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464151

RESUMO

Neutralizing antibodies correlate with protection against SARS-CoV-2. Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection from disease progression. Non-neutralizing antibodies cannot directly protect from infection but may recruit effector cells thus contribute to the clearance of infected cells. Also, they often bind conserved epitopes across multiple variants. We characterized 42 human mAbs from COVID-19 vaccinated individuals. Most of these antibodies exhibited no neutralizing activity in vitro but several non-neutralizing antibodies protected against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs showed a clear dependence on Fc-mediated effector functions. We determined the structures of three non-neutralizing antibodies with two targeting the RBD, and one that targeting the SD1 region. Our data confirms the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.

3.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38175703

RESUMO

Immunoglobulin (IG) replacement products are used routinely in patients with immune deficiency and other immune dysregulation disorders who have poor responses to vaccination and require passive immunity conferred by commercial antibody products. The binding, neutralizing, and protective activity of intravenously administered IG against SARS-CoV-2 emerging variants remains unknown. Here, we tested 198 different IG products manufactured from December 2019 to August 2022. We show that prepandemic IG had no appreciable cross-reactivity or neutralizing activity against SARS-CoV-2. Anti-spike antibody titers and neutralizing activity against SARS-CoV-2 WA1/2020 D614G increased gradually after the pandemic started and reached levels comparable to vaccinated healthy donors 18 months after the diagnosis of the first COVID-19 case in the United States in January 2020. The average time between production to infusion of IG products was 8 months, which resulted in poor neutralization of the variant strain circulating at the time of infusion. Despite limited neutralizing activity, IG prophylaxis with clinically relevant dosing protected susceptible K18-hACE2-transgenic mice against clinical disease, lung infection, and lung inflammation caused by the XBB.1.5 Omicron variant. Moreover, following IG prophylaxis, levels of XBB.1.5 infection in the lung were higher in FcγR-KO mice than in WT mice. Thus, IG replacement products with poor neutralizing activity against evolving SARS-CoV-2 variants likely confer protection to patients with immune deficiency disorders through Fc effector function mechanisms.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos , Reações Cruzadas , Camundongos Transgênicos
4.
Trends Immunol ; 45(1): 11-19, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103991

RESUMO

Current seasonal influenza vaccines, which mainly target hemagglutinin (HA), require annual updates due to the continuous antigenic drift of the influenza virus. Developing an influenza vaccine with increased breadth of protection will have significant public health benefits. The recent discovery of broadly protective antibodies to neuraminidase (NA) has provided important insights into developing a universal influenza vaccine, either by improving seasonal influenza vaccines or designing novel immunogens. However, further in-depth molecular characterizations of NA antibody responses are warranted to fully leverage broadly protective NA antibodies for influenza vaccine designs. Overall, we posit that focusing on NA for influenza vaccine development is synergistic with existing efforts targeting HA, and may represent a cost-effective approach to generating a broadly protective influenza vaccine.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Infecções por Orthomyxoviridae/prevenção & controle , Neuraminidase , Anticorpos Antivirais , Influenza Humana/prevenção & controle
5.
Cell Rep ; 42(12): 113542, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060451

RESUMO

The memory B cell response consists of phenotypically distinct subsets that differ in their ability to respond upon antigen re-encounter. However, the pathways regulating the development and function of memory B cell subsets are poorly understood. Here, we show that CD62L and CD44 are progressively expressed on mouse memory B cells and identify transcriptionally and functionally distinct memory B cell subsets. Bcl6 is important in regulating memory B cell subset differentiation with overexpression of Bcl6 resulting in impaired CD62L+ memory B cell development. Bcl6 regulates memory B cell subset development through control of a network of genes, including Bcl2 and Zeb2. Overexpression of Zeb2 impairs the development of CD62L+ memory B cells. Importantly, CD62L is also differentially expressed on human memory B cells following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and identifies phenotypically distinct populations. Together, these data indicate that CD62L expression marks functionally distinct memory B cell subsets.


Assuntos
Células B de Memória , Subpopulações de Linfócitos T , Animais , Humanos , Camundongos , Antígenos/metabolismo , Memória Imunológica , Ativação Linfocitária , Subpopulações de Linfócitos T/metabolismo , Vacinação
6.
Immunity ; 56(11): 2621-2634.e6, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967533

RESUMO

There is growing appreciation for neuraminidase (NA) as an influenza vaccine target; however, its antigenicity remains poorly characterized. In this study, we isolated three broadly reactive N2 antibodies from the plasmablasts of a single vaccinee, including one that cross-reacts with NAs from seasonal H3N2 strains spanning five decades. Although these three antibodies have diverse germline usages, they recognize similar epitopes that are distant from the NA active site and instead involve the highly conserved underside of NA head domain. We also showed that all three antibodies confer prophylactic and therapeutic protection in vivo, due to both Fc effector functions and NA inhibition through steric hindrance. Additionally, the contribution of Fc effector functions to protection in vivo inversely correlates with viral growth inhibition activity in vitro. Overall, our findings advance the understanding of NA antibody response and provide important insights into the development of a broadly protective influenza vaccine.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Influenza Humana/prevenção & controle , Neuraminidase , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Epitopos , Anticorpos Antivirais , Anticorpos Monoclonais , Vacinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza
8.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693531

RESUMO

We profiled blood and draining lymph node (LN) samples from human volunteers after influenza vaccination over two years to define evolution in the T follicular helper cell (TFH) response. We show LN TFH cells expanded in a clonal-manner during the first two weeks after vaccination and persisted within the LN for up to six months. LN and circulating TFH (cTFH) clonotypes overlapped but had distinct kinetics. LN TFH cell phenotypes were heterogeneous and mutable, first differentiating into pre-TFH during the month after vaccination before maturing into GC and IL-10+ TFH cells. TFH expansion, upregulation of glucose metabolism, and redifferentiation into GC TFH cells occurred with faster kinetics after re-vaccination in the second year. We identified several influenza-specific TFH clonal lineages, including multiple responses targeting internal influenza proteins, and show each TFH state is attainable within a lineage. This study demonstrates that human TFH cells form a durable and dynamic multi-tissue network.

9.
Res Sq ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609304

RESUMO

Catheter-associated urinary tract infections (CAUTIs) contribute greatly to the burden of healthcare associated infections. Acinetobacter baumannii is a Gram-negative bacterium with high levels of antibiotic resistance that is of increasing concern as a CAUTI pathogen. A. baumannii expresses fibrinogen-binding adhesins (Abp1D and Abp2D) that mediate colonization and biofilm formation on catheters, which become coated with fibrinogen upon insertion. We developed a protein subunit vaccine against Abp1DRBD and Abp2DRBD and showed that vaccination significantly reduced bladder bacterial titers in a mouse model of CAUTI. We then determined that immunity to Abp2DRBD alone was sufficient for protection. Mechanistically, we defined the B cell response to Abp2DRBD vaccination and demonstrated that immunity was transferrable to naïve mice through passive immunization with Abp2DRBD-immune sera. This work represents a novel strategy in the prevention of A. baumannii CAUTI and has an important role to play in the global fight against antimicrobial resistance.

10.
Clin Transl Immunology ; 12(8): e1460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564999

RESUMO

Objectives: There is an increasing appreciation for the need to study mucosal antibody responses in humans. Our aim was to determine the utility of different types of samples from the human respiratory tract, specifically nasopharyngeal (NP) swabs obtained for diagnostic purposes and bronchoalveolar lavage (BAL) obtained in outpatient and inpatient settings. Methods: We analysed antibody levels in plasma and NP swabs from 67 individuals with acute influenza as well as plasma and BAL from individuals undergoing bronchoscopy, including five control subjects as well as seven moderately and seven severely ill subjects with a respiratory viral infection. Levels of α2-macroglobulin were determined in BAL and plasma to assess plasma exudation. Results: IgG and IgA were readily detectable in BAL and NP swabs, albeit at different ratios, while IgM levels were low. The total amount of antibody recovered from NP swabs varied greatly between study participants. Accordingly, the levels of influenza HA-specific antibodies varied, and individuals with lower amounts of total Ig in NP swabs had undetectable levels of HA-specific Ig. Similarly, the total amount of antibody recovered from BAL varied between study participants. However, severely ill patients showed evidence of increased plasma exudation, which may confound analysis of their BAL samples for mucosal antibodies. Conclusion: Nasopharyngeal swabs collected for diagnostic purposes may have utility in assessing antibodies from the human nasal mucosa, but variability in sampling should be accounted for. BAL samples can be utilised to study antibodies from the lower respiratory tract, but the possibility of plasma exudation should be excluded.

11.
Immunity ; 56(8): 1927-1938.e8, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506693

RESUMO

Neuraminidase (NA) is one of the two influenza virus surface glycoproteins, and antibodies that target it are an independent correlate of protection. However, our current understanding of NA antigenicity is incomplete. Here, we describe human monoclonal antibodies (mAbs) from a patient with a pandemic H1N1 virus infection in 2009. Two mAbs exhibited broad reactivity and inhibited NA enzyme activity of seasonal H1N1 viruses circulating before and after 2009, as well as viruses with avian or swine N1s. The mAbs provided robust protection from lethal challenge with human H1N1 and avian H5N1 viruses in mice, and both target an epitope on the lateral face of NA. In summary, we identified two broadly protective NA antibodies that share a novel epitope, inhibited NA activity, and provide protection against virus challenge in mice. Our work reaffirms that NA should be included as a target in future broadly protective or universal influenza virus vaccines.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Neuraminidase , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/metabolismo , Neuraminidase/química , Neuraminidase/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Microscopia Crioeletrônica , Epitopos , Camundongos Endogâmicos BALB C , Animais , Camundongos , Influenza Humana/tratamento farmacológico , Modelos Animais de Doenças
12.
Curr Opin Immunol ; 83: 102332, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150126

RESUMO

Germinal centers (GCs) are key microanatomical sites in lymphoid organs where responding B cells mature and undergo affinity-based selection. The duration of the GC reaction has long been assumed to be relatively brief, but recent studies in humans, nonhuman primates, and mice indicate that GCs can last for weeks to months after initial antigen exposure. This review examines recent studies investigating the factors that influence GC duration, including antigen persistence, T-follicular helper cells, and mode of immunization. Potential mechanisms for how persistent GCs influence the B-cell repertoire are considered. Overall, these studies provide a blueprint for how to design better vaccines that elicit persistent GC responses.


Assuntos
Linfócitos T Auxiliares-Indutores , Árvores , Humanos , Animais , Camundongos , Frutas , Centro Germinativo , Linfócitos B , Antígenos
13.
Ann N Y Acad Sci ; 1524(1): 65-86, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37020354

RESUMO

The COVID-19 pandemic has taught us many things, among the most important of which is that vaccines are one of the cornerstones of public health that help make modern longevity possible. While several different vaccines have been successful at stemming the morbidity and mortality associated with various infectious diseases, many pathogens/diseases remain recalcitrant to the development of effective vaccination. Recent advances in vaccine technology, immunology, structural biology, and other fields may yet yield insight that will address these diseases; they may also help improve societies' preparedness for future pandemics. On June 1-4, 2022, experts in vaccinology from academia, industry, and government convened for the Keystone symposium "Progress in Vaccine Development for Infectious Diseases" to discuss state-of-the-art technologies, recent advancements in understanding vaccine-mediated immunity, and new aspects of antigen design to aid vaccine effectiveness.


Assuntos
COVID-19 , Doenças Transmissíveis , Vacinas , Humanos , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Vacinas/uso terapêutico , Vacinação , Desenvolvimento de Vacinas
14.
Immunity ; 56(5): 909-913, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37105169

RESUMO

Immunological imprinting generically refers to the effects prior exposures have on subsequent immune responses to, and eventually protection against, antigenically related viruses. Here, Koutsakos and Ellebedy explain different concepts and terms around imprinting and the fundamental immunological principles behind it. They also discuss the potential role imprinting may have in the context of COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos
15.
Nature ; 617(7961): 592-598, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37011668

RESUMO

The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses and the development of vaccines aimed at the new variants1-4. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells5-9. However, it remains unclear whether the additional doses induce germinal centre reactions whereby re-engaged B cells can further mature, and whether variant-derived vaccines can elicit responses to variant-specific epitopes. Here we show that boosting with an mRNA vaccine against the original monovalent SARS-CoV-2 mRNA vaccine or the bivalent B.1.351 and B.1.617.2 (Beta/Delta) mRNA vaccine induced robust spike-specific germinal centre B cell responses in humans. The germinal centre response persisted for at least eight weeks, leading to significantly more mutated antigen-specific bone marrow plasma cell and memory B cell compartments. Spike-binding monoclonal antibodies derived from memory B cells isolated from individuals boosted with either the original SARS-CoV-2 spike protein, bivalent Beta/Delta vaccine or a monovalent Omicron BA.1-based vaccine predominantly recognized the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted sorting approach, we isolated monoclonal antibodies that recognized the BA.1 spike protein but not the original SARS-CoV-2 spike protein from individuals who received the mRNA-1273.529 booster; these antibodies were less mutated and recognized novel epitopes within the spike protein, suggesting that they originated from naive B cells. Thus, SARS-CoV-2 booster immunizations in humans induce robust germinal centre B cell responses and can generate de novo B cell responses targeting variant-specific epitopes.


Assuntos
Linfócitos B , Vacinas contra COVID-19 , COVID-19 , Centro Germinativo , Imunização Secundária , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Plasmócitos/citologia , Plasmócitos/imunologia , Células B de Memória/citologia , Células B de Memória/imunologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia
16.
Ann N Y Acad Sci ; 1522(1): 60-73, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36722473

RESUMO

Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.


Assuntos
COVID-19 , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Humanos , COVID-19/patologia , COVID-19/virologia , Interações entre Hospedeiro e Microrganismos , Influenza Humana/patologia , Influenza Humana/virologia , Infecções por Vírus Respiratório Sincicial/patologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios , SARS-CoV-2
17.
J Immunol ; 210(7): 947-958, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779802

RESUMO

COVID-19 disproportionately affects persons with HIV (PWH) in worldwide locations with limited access to SARS-CoV-2 vaccines. PWH exhibit impaired immune responses to some, but not all, vaccines. Lymph node (LN) biopsies from PWH demonstrate abnormal LN structure, including dysregulated germinal center (GC) architecture. It is not clear whether LN dysregulation prevents PWH from mounting Ag-specific GC responses in the draining LN following vaccination. To address this issue, we longitudinally collected blood and draining LN fine needle aspiration samples before and after SARS-CoV-2 vaccination from a prospective, observational cohort of 11 PWH on antiretroviral therapy: 2 who received a two-dose mRNA vaccine series and 9 who received a single dose of the Ad26.COV2.S vaccine. Following vaccination, we observed spike-specific Abs, spike-specific B and T cells in the blood, and spike-specific GC B cell and T follicular helper cell responses in the LN of both mRNA vaccine recipients. We detected spike-specific Abs in the blood of all Ad26.COV2.S recipients, and one of six sampled Ad26.COV2.S recipients developed a detectable spike-specific GC B and T follicular helper cell response in the draining LN. Our data show that PWH can mount Ag-specific GC immune responses in the draining LN following SARS-CoV-2 vaccination. Due to the small and diverse nature of this cohort and the limited number of available controls, we are unable to elucidate all potential factors contributing to the infrequent vaccine-induced GC response observed in the Ad26.COV2.S recipients. Our preliminary findings suggest this is a necessary area of future research.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Ad26COVS1 , SARS-CoV-2 , Estudos Prospectivos , COVID-19/prevenção & controle , Centro Germinativo , Vacinação , Linfonodos , Anticorpos Antivirais
20.
Nat Commun ; 13(1): 7864, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543789

RESUMO

Contemporary influenza A H3N2 viruses circulating since 2016 have acquired a glycosylation site in the neuraminidase in close proximity to the enzymatic active site. Here, we investigate if this S245N glycosylation site, as a result of antigenic evolution, can impact binding and function of human monoclonal antibodies that target the conserved active site. While we find that a reduction in the inhibitory ability of neuraminidase active site binders is measurable, this class of broadly reactive monoclonal antibodies maintains protective efficacy in vivo.


Assuntos
Anticorpos Monoclonais , Vírus da Influenza A Subtipo H3N2 , Neuraminidase , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Domínio Catalítico/imunologia , Domínio Catalítico/fisiologia , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/metabolismo , Influenza Humana/imunologia , Influenza Humana/metabolismo , Neuraminidase/química , Neuraminidase/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...